Observe the evaporation of a drop of table salt solution on a warm hydrophobic surface. After the water evaporates, a variety of characteristic crystal shapes remain. Research and explain this phenomenon.
crystal (youtube, Никита Черников, 06.07.2025), https://youtube.com/shorts/CoB1qcRki5k *Crystal Critters (youtube, American Physical Society, 25.11.2019), https://youtu.be/VV5oc28QP7o *S. A. McBride, H.-L. Girard, and K. K. Varanasi. Crystal critters: Self-ejection of crystals from heated, superhydrophobic surfaces. Sci. Adv. 7 eabe6960 (2021), https://doi.org/10.1126/sciadv.abe6960 F. Kanngießer and M. Kahnert. Modeling optical properties of non‐cubical sea‐salt particles. JGR Atmospheres 126, 4, e2020JD033674 (2021), https://doi.org/10.1029/2020JD033674 *S. A. McBride, H.-L. Girard, and K. K. Varanasi. Crystal critters. Phys. Rev. Fluids 5, 11, 110508 (2020), https://doi.org/10.1103/PhysRevFluids.5.110508
S. A. McBride, R. Skye, and K. K. Varanasi. Differences between colloidal and crystalline evaporative deposits. Langmuir 36, 40, 11732-11741 (2020), https://doi.org/10.1021/acs.langmuir.0c01139 *H. Salim, P. Kolpakov, D. Bonn, and N. Shahidzadeh. Self-lifting NaCl crystals. J. Phys. Chem. Lett. 11, 7388-7393 (2020), https://doi.org/10.1021/acs.jpclett.0c01871 S. Misyura. The dependence of evaporation and crystallization kinetics on dynamic and thermal background. AIChE J. 66, e16282 (2020), https://doi.org/10.1002/aic.16282 M. J. Qazi, H. Salim, C. A. W. Doorman, E. Jambon-Puillet, and N. Shahidzadeh. Salt creeping as a self-amplifying crystallization process. Sci. Adv. 5, eaax1853 (2019), https://doi.org/10.1126/sciadv.aax1853
S. A. McBride, S. Dash, and K. K. Varanasi. Evaporative crystallization in drops on superhydrophobic and liquid-impregnated surfaces. Langmuir 34, 41, 12350-12358 (2018), https://doi.org/10.1021/acs.langmuir.8b00049 S. Y. Misyura. Evaporation and heat transfer of aqueous salt solutions during crystallization. Appl. Therm. Eng. 139, 203-212 (2018), https://doi.org/10.1016/j.applthermaleng.2018.04.068 S. Bengaluru Subramanyam, V. Kondrashov, J. Rühe, and K. K. Varanasi. Low ice adhesion on nanotextured superhydrophobic surfaces under supersaturated conditions. ACS Appl. Mater. Interfaces 8, 20, 12583-12587 (2016), https://doi.org/10.1021/acsami.6b01133 J. Desarnaud, D. Bonn, and N. Shahidzadeh. The pressure induced by salt crystallization in confinement. Sci. Rep. 6, 30856 (2016), https://doi.org/10.1038/srep30856 N. Shahidzadeh, M. F. L. Schut, J. Desarnaud, M. Prat, and D. Bonn. Salt stains from evaporating droplets. Sci. Rep. 5, 10335 (2015), https://doi.org/10.1038/srep10335 A. Naillon, P. Duru, M. Marcoux, and M. Prat. Evaporation with sodium chloride crystallization in a capillary tube. J. Cryst. Growth 422, 52-61 (2015), https://doi.org/10.1016/j.jcrysgro.2015.04.010 B. Shin, M.-W. Moon, and H.-Y. Kim. Rings, igloos, and pebbles of salt formed by drying saline drops. Langmuir 30, 43, 12837-12842 (2014), https://doi.org/10.1021/la503095t N. Shahidzadeh-Bonn, S. Rafai, D. Bonn, and G. Wegdam. Salt crystallization during evaporation: Impact of interfacial properties. Langmuir 24, 16, 8599-8605 (2008), https://doi.org/10.1021/la8005629
P. Y. Chan and N. Goldenfeld. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs. Phys. Rev. E 76, 4, 046104 (2007), https://doi.org/10.1103/PhysRevE.76.046104 J. M. García-Ruiz, R. Villasuso, C. Ayora, A. Canals, and F. Otálora. Formation of natural gypsum megacrystals in Naica, Mexico. Geology 35, 4, 327-330 (2007), https://doi.org/10.1130/G23393A.1 Y. O. Popov. Evaporative deposition patterns revisited: Spatial dimensions of the deposit. Phys. Rev. E 71, 3, 036313 (2005), https://doi.org/10.1103/PhysRevE.71.036313, arXiv:condmat/0408106 [cond-mat.soft] P. Aussillous and D. Quéré. Liquid marbles. Nature 411, 924-927 (2001), https://doi.org/10.1038/35082026 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten. Contact line deposits in an evaporating drop. Phys. Rev. E 62, 1, 756-765 (2000), https://doi.org/10.1103/PhysRevE.62.756 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827-829 (1997), https://doi.org/10.1038/39827 R. Du and H. A. Stone. Evaporatively controlled growth of salt trees. Phys. Rev. E 53, 2, 1994- 1997 (1996), https://doi.org/10.1103/PhysRevE.53.1994
C. P. Yakymyshyn, K. R. Stewart, E. P. Boden, and P. D. Phelps. Linear- and nonlinear-optic properties of single-crystal organic salts. In Opt. Soc. Am. Annu. Meeting, Technical Digest Series, paper FD6 (Optica Publishing Group, 1990), https://doi.org/10.1364/OAM.1990.FD6 L. Pauling. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 4, 1010-1026 (1929), https://doi.org/10.1021/ja01379a006, https://www.docenti.unina.it/webdocenti-be/allegati/materiale-didattico/34126856 R. J. D. Tilley. Crystals and Crystal Structures (John Wiley & Sons 2006), https://www.geokniga.org/bookfiles/geokniga-crystalsandcrystalstructuresbyrichardjdtilleyz-liborg.pdf